Experimental Evaluation of a Generative Probabilistic Image Retrieval Model on ’Easy’ Data

نویسندگان

  • Thijs Westerveld
  • Arjen P. de Vries
چکیده

We present evaluation results of a generative probabilistic image retrieval model using ‘easy data’. Previous research into our model’s retrieval effectiveness has used the test collection developed at TREC’s Video Track, but as discussed in detail in [17], its search task has been too difficult to measure actual performance of the retrieval model. The ‘easy data’ experiments presented here evaluate our model under varying model parameters on the Corel set. The Corel data set is relatively easy because images are nicely grouped into coherent themes, the within theme similarity is high and the across theme similarity relatively low. These properties make Corel a nice vehicle for testing, presenting or selling new content based retrieval techniques and models. In contrast to the TREC data, the Corel collection gives statistically significant differences between varying experimental conditions, so we get more insight in the model’s behaviour. We then discuss at length the limitations of the results obtained using this data set, comparing the experiments performed here to those on the TREC data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generative Theory of Relevance

A GENERATIVE THEORY OF RELEVANCE SEPTEMBER 2004 VICTOR LAVRENKO B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor W. Bruce Croft and Professor James Allan We present a new theory of relevance for the field of Information Retrieval. Relevance is viewed as a generative process, and we hypothesize...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Blood Cell Image Retrieval System Using Color, Shape and Bag of Words

The ever increasing number of medical images in hospitals urges on the need for generic content based image retrieval systems. These systems are in an area of great importance to the healthcare providers. The first and foremost function in such system is feature extraction. In this paper, different feature extraction techniques have been utilized to represent medical blood cell images. They are...

متن کامل

Performance Evaluation of Medical Image Retrieval Systems Based on a Systematic Review of the Current Literature

Background and Aim: Image, as a kind of information vehicle which can convey a large volume of information, is important especially in medicine field. Existence of different attributes of image features and various search algorithms in medical image retrieval systems and lack of an authority to evaluate the quality of retrieval systems, make a systematic review in medical image retrieval system...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003